If you want to learn more, please visit our website SUIN.
Power Quality Monitoring has several advantages, like enhancing performance and quality. A PQM System will gather, examine, and interpret raw energy measurement data into useful information. A typical monitoring system measures voltage and electric current, but the ground quality might also be measured if dispersed loads or harmonics are found. There are a number of various reasons to use power quality monitoring. It helps manufacturing plants in energy management, preventative maintenance, quality control and thus saving money in the long run. Today, many end users have telecommunications or computer equipment that does not utilize PQM. This makes them susceptible to power quality problems. If you understand the implications of power fluctuations then you will realize the importance of power quality monitoring.
It is projected that power outages account for up to 40 percent of all business downtime. To monitor their power, modern power plants use digital error recorders, smart relays, voltage recorders, in-plant power monitors, and specific purpose power quality equipment. Consumers of power, such as buildings and factories use power quality meters from manufacturers such as MachineSense to prevent equipment damage and fire.
Interested in Power Quality Monitoring for Your Factory or Building?
Book a Free Consultation with our Sales Engineer Today!
MachineSenseTM Power Analyzer toroids are placed directly on incoming power lines to automatically monitor power conditions and detect power anomalies. The sensor data transmits through a self-contained data hub directly to your router and onto cloud-based servers running powerful analytic software. Results are then transmitted from the server to either a desktop or user friendly app where you will view power conditions with helpful advice to correct power anomalies.
Individual Waveform Capture Allowing engineers and executives to track slowly changing variation in electrical waveforms to root out the cause of mechanical failures well before they happen which can be isolated, recorded and graphically displayed while using the Acuvim IIW.
Power Quality Monitoring provides an analysis of non-linear loads connected to the distribution system, all of which affect electrical frequencies and cause problems such as misfiring, over-heating and voltage spikes. Individual harmonic measurement can be read on all of the MachineSense power quality meters.
Voltage Sags and Swells are a decrease and increase in voltage over a brief time. Voltage sags are the most typical events that lead to affect the quality of energy and are usually the most pricey. They affect gear which range from PLCs, relays, controllers and everything else. When the sag happens, the power source within the device overcompensates which when the sag is reduced enough can harm the internal circuits of the device causing malfunctions.
Though these are generally blamed on the utility company, the reality is that these are usually caused inside the site or building and includes grounding, bonding, and other problems or from powering different equipment through the same power supply.
The deviation of the frequency at which electric current is supplied may confuse logic systems and affect the operating speed of machinery. These deviations in frequency can be effectively monitored using any MachineSense Power Quality Meter.
The ratio of the real power flowing to the load that it can be used for; this 0-1 figure is a most accurate depiction of how viable the electricity supplied is. Low power factor ( usually called dirty power ) affects devices and causes inefficiencies in their functioning. All of the MachineSense power quality meters allow users to keep track of this ratio and users can track the historical power factor.
An effective Power Quality Audit using MachineSense power quality monitoring systems can be achieved using MachineSense Power Quality Meters as a permanently installed power quality meter for proactive and comprehensive power quality measurement. The meter can be read remotely via our proprietary cloud-based software and app.
Electrical power runs almost every machinery in the world. As clean unadulterated food is important for the healthy lifestyle of human beings, machines need clean power for longevity and uninterrupted operations. Therefore, high-quality power is absolutely required for the successful operation of the factories and the buildings. IEEE standard defines the international standard for clean power by limiting the maximum limits allowed for over/under voltage/current conditions, Sag/Swell, poor grounding/earthing, level of different current and voltage harmonics, etc. Power distribution companies maintain this standard while feeding to the transformers at the input to the factories and the buildings. However, power distribution inside the factory or the building may not comply with IEEE standards since within the factories/buildings power quality degrades due to uneven tapping of single-phase load from 3-phase lines, DC loads like LEDs, UPS, Mobile/Laptop charges, etc. Poor quality is not only responsible for immature death/downtime of the machines/controllers, it also threatens basic fire safety issues since power surges or imbalance may lead to the burning of the wires. In addition, harmonic contents of the power are normally wasted and thus contribute to energy inefficiencies.
Power Quality Meters have wide range of applications - most notable among them are:
If you want to learn more, please visit our website Handheld Power Quality Analyzer Manufacturer.
Power Quality analyzer has one hardware and 4 software components.
IEEE - defines the power quality issues that have to be monitored in any Industrial or commercial operation. This includes approximately 37 different kinds of issues but overwhelmingly only a handful of them occur frequently in any manufacturing or building set-up. Most common occurring issues in power quality are:
Poor power quality may lead to a fire in many ways and is responsible for 85% of the fire in the buildings.
All kinds of equipment barring old-style Tungsten lamps are prone to damage due to power quality.
There are several power quality standards but IEEE is the most commonly followed standard worldwide. IEEE - is the latest which has superseded -. For more details, please check
https://standards.ieee.org/standard/-.html
The following developments in the power sector played a tremendous role on power quality:
Total loss of United States GDP due to 1,2,3 are more than $45.7B a year (https://energycollection.us/Energy-Reliability/Cost-Power-Disturbances.pdf). However, the problem of power quality is very often ignored since it is not monitored. Most of the time end-users get aware of it only when they see frequent breakdowns of the machines or fire coming out of the wires. Waiting for such a long time to know the building has poor power quality is dangerous for the safety of the inhabitants of the buildings as well as utility machines.
The solution to Power Quality problems that have resulted from 1,2,3 are well recorded and recommended in ISA ( International Society of Automation: https://www.isa.org/about-isa/ ). However, to provide ISA compliant clean power to every building and plant, that are already suffering from poor power quality (1-3), one needs a system that:
The commercial challenge for 1 includes cost-effective hardware and cloud platform ( IoT or Cyber-Physical System ) that is affordable by building and plant management. That problem has been solved by MachineSense LLC by using state of the art System on Chips ( SoC), single-board computer like Raspberry Pi and Open Sourced software.
However, the commercial challenge for 2 is far more difficult and critical. As shown in the paper (https://cdn.selinc.com/assets/Literature/Publications/Technical%20Papers/_TodaysEngineeringShortage_JP__Web.pdf?v=-), the US now produces only 500 engineers ( reduced from ) annually who are capable of such power diagnosis. There are hardly 50,000 power engineers active in the US. It is impossible for 50,000 engineers to address the power quality issues of 13M US buildings ( office, hospitals, plants, etc. ) even if all data to solve the problems are available.
Power Quality Analyzers had a wide range of applications - most notable among them are:
Navigate the complexities of electrical measurement with our premier selection of Power Quality Analyzers, designed to provide you with a clear understanding of power characteristics in your systems. Our range features industry-leading brands such as Fluke, Amprobe, AEMC, Megger and more.
Showing 116 of 28 results
Fluke analyzers are synonymous with robustness and precision; Amprobe, offering intuitive devices that simplify complex diagnostics; AEMC, known for their comprehensive analysis tools; and Megger, which combines user-friendly features with detailed power quality assessments. These top brands are the cornerstones of our collection, ensuring that every reading is accurate and every report is detailed, helping you to maintain system reliability, troubleshoot power problems, and prevent downtime with confidence and ease.
Want more information on Handheld Power Quality Analyzer Dealer? Feel free to contact us.